In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.