Due to the intensification of climate change around the world, the incidence of natural disasters is increasing year by year, and monitoring, forecasting, and detecting evolution using satellite imaging technology are important methods for remote sensing. This study aimed to monitor the occurrence of fire disasters using Sentinel-2 satellite imaging technology to determine the burned-severity area via classification and to study the recovery process to observe extraordinary natural phenomena. The study area that was sampled was in the southeastern part of Mongolia, where most wildfires occur each year, near the Shiliin Bogd Mountain in the natural steppe zone and in the Bayan-Uul sub-province in the forest-steppe natural zone. The normalized burn ratio (NBR) method was used to map the area of the fire site and determine the classification of the burned area. The Normalized Difference Vegetation Index (NDVI) was used to determine the recovery process in a timely series in the summer from April to October. The results of the burn severity were demonstrated in the distribution maps from the satellite images, where it can be seen that the total burned area of the steppe natural zone was 1164.27 km2, of which 757.34 km2 (65.00 percent) was classified as low, 404.57 km2 (34.70 percent) was moderate-low, and the remaining 2.36 km2 (0.30 percent) was moderate-high, and the total burned area of the forest-steppe natural zone was 588.35 km2, of which 158.75 km2 (26.98 percent) was classified as low, 297.75 km2 (50.61 percent) was moderate-low, 131.25 km2 (22.31 percent) was moderate-high, and the remaining 0.60 km2 (0.10 percent) was high. Finally, we believe that this research is most helpful for emergency workers, researchers, and environmental specialists.