2017
DOI: 10.4172/2165-7866.1000211
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing Large-Scale Smart Card Data to Investigate Public Transport Travel Behaviour Using Big Data Analytics

Abstract: In urban public transport, Smart card data have been used more and more in order to collect fare automatically. They allowed passengers to access almost all type of public transportation system modes (bus, train, tram, funiculars, LRT, metro, and ferryboats) with a single card that is valid for the complete journey. Although Smart card major concentration is in revenue collection, they also generate massive amounts of passive data from the technological devices installed to control the operation of them. Gener… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…Sistem AFC memungkinkan management mendapatkan data terperinci dalam jumlah besar mengenai rute setiap komuter setiap hari. Management kereta Commuter Line dapat menganalisis data tersebut untuk mendapatkan informasi tetang perilaku perjalanan dan perpindahan komuter dalam jumlah besar yang memudahkah operator kereta Commuter Line melakukan evaluasi kualitas layanan dan mengoptimalkan strategi operasional kereta commuter [2], [3].…”
Section: Pendahuluanunclassified
“…Sistem AFC memungkinkan management mendapatkan data terperinci dalam jumlah besar mengenai rute setiap komuter setiap hari. Management kereta Commuter Line dapat menganalisis data tersebut untuk mendapatkan informasi tetang perilaku perjalanan dan perpindahan komuter dalam jumlah besar yang memudahkah operator kereta Commuter Line melakukan evaluasi kualitas layanan dan mengoptimalkan strategi operasional kereta commuter [2], [3].…”
Section: Pendahuluanunclassified
“…The emergence of smart farecard data, which record both geographic and temporal footprints over time, has made it feasible to conduct longitudinal analysis on transit users ( 4, 5 ). Recognized as a legitimate source of “big data,” there is a growing body of literature that delves into various dimensions of transit planning—travel demand variability ( 6, 7 ), transfer behavior ( 8, 9 ), and heuristics—to impute transit origin–destination (O-D) matrices ( 1013 ). Smart farecard data can inform several levels of planning—strategic and long-term (user behavior, customer segmentation, demand analysis), tactical (schedule adjustments, load profiles, network restructuring), and operational (evaluation of day-to-day performance indicators on reliability, productivity, etc.)…”
Section: Previous Researchmentioning
confidence: 99%