2014
DOI: 10.1080/10919392.2014.866505
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing Massive Data Sets: An Adaptive Fuzzy Neural Approach for Prediction, with a Real Estate Illustration

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
24
0
4

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 32 publications
(28 citation statements)
references
References 22 publications
0
24
0
4
Order By: Relevance
“…The value of any building or plot of land belongs to a rich network where decisions about and perceptions of neighboring properties influence the final market value. Guan, Shi, Zurada, & Levitan (2014) compared traditional MRA techniques to alternative data mining techniques resulting in mixed results. However, as Helbich, Jochem, Mcke, & Hfle (2013) state, hedonic pricing models can be improved in two primary ways: through novel estimation techniques, and by ancillary structural, locational, and neighborhood variables.…”
Section: Predicting Gentrification Using Machine Learningmentioning
confidence: 99%
See 1 more Smart Citation
“…The value of any building or plot of land belongs to a rich network where decisions about and perceptions of neighboring properties influence the final market value. Guan, Shi, Zurada, & Levitan (2014) compared traditional MRA techniques to alternative data mining techniques resulting in mixed results. However, as Helbich, Jochem, Mcke, & Hfle (2013) state, hedonic pricing models can be improved in two primary ways: through novel estimation techniques, and by ancillary structural, locational, and neighborhood variables.…”
Section: Predicting Gentrification Using Machine Learningmentioning
confidence: 99%
“…Antipov & Pokryshevskaya (2012) came to a similar conclusion about the superiority of Random Forest for real estate valuation after comparing 10 algorithms: multiple regression, CHAID, exhaustive CHAID, CART, 2 types of k-nearest neighbors, multilayer perceptron artificial neural network, radial basis functional neural network, boosted trees and finally Random Forest. Guan et al (2014) compared three different approaches to defining spatial neighbors: a simple radius technique, a k-nearest neighbors technique using only distance and a k-nearest neighbors technique using all attributes. Interestingly, the location-only KNN models performed best, although by a slight margin.…”
Section: Predicting Gentrification Using Machine Learningmentioning
confidence: 99%
“…Other works rely on expert systems based on fuzzy logic because of the similarity between this technique and the human approach to decision making [7]. For example, Guan et al [8] have used adaptive neuro-fuzzy inference system (ANFIS) for real estate appraisal. To do so, they have used data from 20,192 sales records in a mid-western city of the US between 2003 and 2007, which were finally reduced to 16,523 after manual curation.…”
Section: State Of the Artmentioning
confidence: 99%
“…При построении моделей рынка недвижимости обычно исполь-зуют две разновидности информационного подхода: регрессионную [2, 4-8] и нейросетевую [9][10][11][12][13][14][15][16][17][18][19]. В качестве входных (независимых) пе-ременных, как правило, учитывают строительно-эксплуатационные параметры, такие как тип объекта, место его расположения, площадь, количество комнат, этажей, наличие балкона, лоджии, парковки и др.…”
Section: регрессионный и нейросетевой подходы к построению моделейunclassified
“…Следует отметить, что как регрессионные, так и нейросетевые мо-дели [2,[4][5][6][7][8][9][10][11][12][13][14][15][16][17]19], учитывающие одни только строительно-эксплуата-ционные факторы, традиционно используются для массовой оценки недвижимости в ряде стран с развитой и достаточно стабильной эконо-микой. В развивающихся же странах, включая Россию, рынок недвижи-мости подвержен влиянию быстроменяющихся мега-, макро-и мезоэко-номических факторов.…”
Section: традиционные и комплексные моделиunclassified