2021
DOI: 10.1007/s42979-021-00768-5
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing Sequence Data with Markov Chain Models in Scientific Experiments

Abstract: Virtual reality-based instruction is becoming an important resource to improve learning outcomes and communicate handson skills in science laboratory courses. Our study attempts first to investigate whether a Markov chain model can predict the students' performance in conducting an experiment and whether simulations improve learner achievement in handling lab equipment and conducting science experiments in physical labs. In the present study, three cohorts of graduate students are trained on a microscopy exper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 60 publications
0
2
0
2
Order By: Relevance
“…The Markov model is a probabilistic model that handles sequential data by assuming that each observation is dependent solely on the current state of a discrete variable that evolves over time (i.e., as a Markov chain 41 ). The Markov model is characterized by the number of states and transition probabilities, which determine the likelihood of transitioning from one state to another.…”
Section: Methodsmentioning
confidence: 99%
“…The Markov model is a probabilistic model that handles sequential data by assuming that each observation is dependent solely on the current state of a discrete variable that evolves over time (i.e., as a Markov chain 41 ). The Markov model is characterized by the number of states and transition probabilities, which determine the likelihood of transitioning from one state to another.…”
Section: Methodsmentioning
confidence: 99%
“…Також, в процесі отримання вмінь, на базі практичного використання систем імітаційного моделювання та емуляції, учасниками навчального процесу використовується вбудований модуль тестування із завданнями різних рівнів складності. При тестуванні студенти перевіряють параметри налаштування мережевих пристроїв, доступність кінцевих вузлів та наявність зв'язків між сукупністю сегментів складної мережі [12]. Такий підхід сприяє не формальному підходу до виконання завдань, так як студенти не прив'язані до звичайних послідовних дій (рис.…”
Section: рис 3 модель отримання знань та вміньunclassified
“…Zammarchi, Frigau and Mola evaluated the web usability of a University in Italy website using eye tracking data, utilizing Markov chain analysis to study transitions between different areas of interest and suggesting areas for improvement in web usability based on fixation counts and the Markov chain analysis [38]. Paxinou et al investigated how virtual simulations enhance learning outcomes in science labs in a Greek University using a Markov Chain Model to predict students' performance, proposing that learners trained with virtual reality exhibit higher proficiency in conducting experiments compared to traditional methods [39]. Fraoua and David optimized the learning path in an online course using a Markov Chain Model, observing that learners were bored and as a result they dropped out of their courses [40].…”
Section: Theoretical Backgroundmentioning
confidence: 99%