This thesis presents novel methods based on a combination of well-known statistical techniques for faster estimation of memory yield and their application in the design of energy-efficient subthreshold memories. The emergence of size-constrained Internet-of-Things (IoT) devices and proliferation of the wearable market has brought forward the challenge of achieving the maximum energy efficiency per operation in these battery operated devices. Achieving this sought-after minimum energy operation is possible under sub-threshold operation of the circuit. However, reliable memory operation is currently unattainable at these ultra-low operating voltages because of the memory circuit's vanishing noise margins which shrink further in the presence of random process variations. The statistical methods, presented in this thesis, make the yield optimization of the sub-threshold memories computationally feasible by reducing the SPICE simulation overhead.
We present novel modifications to statistical sampling techniques that reduce the SPICE simulation overhead in estimating memory failure probability. These sampling scheme provides 40x reduction in finding most probable failure point and 10x reduction in estimating failure probability using the SPICE simulations compared to the existing proposals. We then provide a novel method to create surrogate models of the memory margins with better extrapolation capability than the traditional regression methods. These models, based on Gaussian process regression, encode the sensitivity of the memory margins with respect to each individual threshold variation source in a one-dimensional kernel. We find that our proposed additive kernel based models have 32% smaller out-of-sample error (that is, better extrapolation capability outside training set) than using the six-dimensional universal kernel like Radial Basis Function (RBF).
The thesis also explores the topological modifications to the SRAM bitcell to achieve faster read operation at the sub-threshold operating voltages. We present a ten-transistor SRAM bitcell that achieves 2x faster read operation than the existing ten-transistor sub-threshold SRAM bitcells, while ensuring similar noise margins. The SRAM bitcell provides 70% reduction in dynamic energy at the cost of 42% increase in the leakage energy per read operation. Finally, we investigate the energy efficiency of the eDRAM gain-cells as an alternative to the SRAM bitcells in the size-constrained IoT devices. We find that reducing their write path leakage current is the only way to reduce the read energy at Minimum Energy operation Point (MEP). Further, we study the effect of transistor up-sizing under the presence of threshold voltage variations on the mean MEP read energy by performing statistical analysis based on the ANOVA test of the full-factorial experimental design.
Esta tesis presenta nuevos métodos basados en una combinación de técnicas estadísticas conocidas para la estimación rápida del rendimiento de la memoria y su aplicación en el diseño de memorias de energia eficiente de sub-umbral. La aparición de los dispositivos para el Internet de las cosas (IOT) y la proliferación del mercado portátil ha presentado el reto de lograr la máxima eficiencia energética por operación de estos dispositivos operados con baterias. La eficiencia de energía es posible si se considera la operacion por debajo del umbral de los circuitos. Sin embargo, la operación confiable de memoria es actualmente inalcanzable en estos bajos niveles de voltaje debido a márgenes de ruido de fuga del circuito de memoria, los cuales se pueden reducir aún más en presencia de variaciones randomicas de procesos. Los métodos estadísticos, que se presentan en esta tesis, hacen que la optimización del rendimiento de las memorias por debajo del umbral computacionalmente factible mediante la simulación SPICE. Presentamos nuevas modificaciones a las técnicas de muestreo estadístico que reducen la sobrecarga de simulación SPICE en la estimación de la probabilidad de fallo de memoria. Estos esquemas de muestreo proporciona una reducción de 40 veces en la búsqueda de puntos de fallo más probable, y 10 veces la reducción en la estimación de la probabilidad de fallo mediante las simulaciones SPICE en comparación con otras propuestas existentes. A continuación, se proporciona un método novedoso para crear modelos sustitutos de los márgenes de memoria con una mejor capacidad de extrapolación que los métodos tradicionales de regresión. Estos modelos, basados en el proceso de regresión Gaussiano, codifican la sensibilidad de los márgenes de memoria con respecto a cada fuente de variación de umbral individual en un núcleo de una sola dimensión. Los modelos propuestos, basados en kernel aditivos, tienen un error 32% menor que el error out-of-sample (es decir, mejor capacidad de extrapolación fuera del conjunto de entrenamiento) en comparacion con el núcleo universal de seis dimensiones como la función de base radial (RBF). La tesis también explora las modificaciones topológicas a la celda binaria SRAM para alcanzar velocidades de lectura mas rapidas dentro en el contexto de operaciones en el umbral de tensiones de funcionamiento. Presentamos una celda binaria SRAM de diez transistores que consigue aumentar en 2 veces la operación de lectura en comparacion con las celdas sub-umbral de SRAM de diez transistores existentes, garantizando al mismo tiempo los márgenes de ruido similares. La celda binaria SRAM proporciona una reducción del 70% en energía dinámica a costa del aumento del 42% en la energía de fuga por las operaciones de lectura. Por último, se investiga la eficiencia energética de las células de ganancia eDRAM como una alternativa a los bitcells SRAM en los dispositivos de tamaño limitado IOT. Encontramos que la reducción de la corriente de fuga en el path de escritura es la única manera de reducir la energía de lectura en el Punto Mínimo de Energía (MEP). Además, se estudia el efecto del transistor de dimensionamiento en virtud de la presencia de variaciones de voltaje de umbral en la media de energia de lecture MEP mediante el análisis estadístico basado en la prueba de ANOVA del diseño experimental factorial completo.