Industrial agglomeration, as a typical aspect of industrial structures, significantly influences policy development, economic growth, and regional employment. Due to the collection limitations of gross domestic product (GDP) data, the traditional assessment of industrial agglomeration usually focused on a specific field or region. To better measure industrial agglomeration, we need a new proxy to estimate GDP data for different industries. Currently, nighttime light (NTL) remote sensing data are widely used to estimate GDP at diverse scales. However, since the light intensity from each industry is mixed, NTL data are being adopted less to estimate different industries’ GDP. To address this, we selected an optimized model from the Gaussian process regression model and random forest model to combine Suomi National Polar-Orbiting Partnership—Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data and points-of-interest (POI) data, and successfully estimated the GDP of eight major industries in China for 2018 with an accuracy (R2) higher than 0.80. By employing the location quotient to measure industrial agglomeration, we found that a dominated industry had an obvious spatial heterogeneity. The central and eastern regions showed a developmental focus on industry and retail as local strengths. Conversely, many western cities emphasized construction and transportation. First-tier cities prioritized high-value industries like finance and estate, while cities rich in tourism resources aimed to enhance their lodging and catering industries. Generally, our proposed method can effectively measure the detailed industry agglomeration and can enhance future urban economic planning.