Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Hybrid zones offer unique insight into reproductive barriers and plant speciation mechanisms. This study investigated postzygotic reproductive isolation in the natural hybrid Epidendrum × purpureum, which occurs in sympatry with its parent species, Epidendrum denticulatum and E. orchidiflorum. We examined the development of male and female gametophytes and the events leading to seed formation in this hybrid zone. Floral buds and flowers from E. × purpureum individuals were collected at various stages of development. Both self‐pollination and backcrosses between hybrids and parental species were performed to follow ovule and seed development up to 60 days after pollination. The material was analysed using optical and confocal microscopy. In most hybrids, microsporogenesis and microgametogenesis occur regularly, forming viable male gametophytes. Non‐viable male gametophytes were also observed and are the result of symmetrical mitotic division. The development of the female gametophyte occurs after self‐pollination, and proceeds regularly, resulting in a reduced female gametophyte. Embryo development in the parental species occurs without abnormalities, while in backcrosses between hybrids and parental species, most embryos degenerate. Embryo degeneration in the crosses between hybrids can be explained by genetic incompatibilities. The co‐occurrence of viable embryos and degenerating embryos in backcrosses between hybrids and parental species point to incomplete postzygotic reproductive barriers between the hybrid and the progenitors. Our findings suggest that E. × purpureum could facilitate gene flow between parental species, as much of its embryological development occurs without abnormalities.
Hybrid zones offer unique insight into reproductive barriers and plant speciation mechanisms. This study investigated postzygotic reproductive isolation in the natural hybrid Epidendrum × purpureum, which occurs in sympatry with its parent species, Epidendrum denticulatum and E. orchidiflorum. We examined the development of male and female gametophytes and the events leading to seed formation in this hybrid zone. Floral buds and flowers from E. × purpureum individuals were collected at various stages of development. Both self‐pollination and backcrosses between hybrids and parental species were performed to follow ovule and seed development up to 60 days after pollination. The material was analysed using optical and confocal microscopy. In most hybrids, microsporogenesis and microgametogenesis occur regularly, forming viable male gametophytes. Non‐viable male gametophytes were also observed and are the result of symmetrical mitotic division. The development of the female gametophyte occurs after self‐pollination, and proceeds regularly, resulting in a reduced female gametophyte. Embryo development in the parental species occurs without abnormalities, while in backcrosses between hybrids and parental species, most embryos degenerate. Embryo degeneration in the crosses between hybrids can be explained by genetic incompatibilities. The co‐occurrence of viable embryos and degenerating embryos in backcrosses between hybrids and parental species point to incomplete postzygotic reproductive barriers between the hybrid and the progenitors. Our findings suggest that E. × purpureum could facilitate gene flow between parental species, as much of its embryological development occurs without abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.