Colorimetry is an important on-site detection method for organophosphorus compounds. O-Ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) is recognized as one of the deadliest organophosphorus chemical agents, and the rapid on-site detection of VX is of great significance to public safety. In this paper, a squaraine derivative was synthesized as probe molecules, and the sensing characteristics of VX in a colorimetric solution system containing tetrabutylammonium fluoride (TABF) were studied with UV−Vis spectroscopy, nuclear magnetic resonance (1H NMR), and mass spectrometry. The results showed that the binding of the thiol moiety of VX to the quaternary ring of the squaraine probe changed the molecular conjugation system, and that the rapid colorimetric detection of micro-trace VX was achieved based on color change before and after interaction with squaraine, enabling the detection limit of VX to be as low as 0.4 μg/mL. Moreover, the colorimetry method also possessed satisfactory sensitivity and could detect VX from other organophosphorus pesticides (e.g., parathion and dichlorvos), phosphorus-containing reagents (e.g., diethyl chlorophosphate and dimethyl methylphosphonate), a benzene series (e.g., toluene), and acid and base agents (e.g., acetic acid and triethylamine, respectively), which demonstrated that squaraine-based colorimetry could provide fast, on-site measurement results for VX detection. The strategy of this research could be extended as a common approach for the detection of other organophosphorus nerve agents or organophosphorus pesticides.