Malaria prevalence has become medically important and a socioeconomic impediment for the endemic regions, including Purulia, West Bengal. Geo-environmental variables, humidity, altitude, and land use patterns are responsible for malaria. For surveillance of the endemic nature of Purulia’s blocks, statistical and spatiotemporal factors analysis have been done here. Also, a novel approach for the Pf malaria treatment using methanolic leaf extract of Morus alba S1 has significantly reduced the parasite load. The EC50 value (1.852) of the methanolic extract of M. alba S1 with P. falciparum 3D7 strain is close to the EC50 value (0.998) of the standard drug chloroquine with the same chloroquine-sensitive strain. Further studies with an in-silico model have shown successful interaction between DHFR and the phytochemicals. Both 1-octadecyne and oxirane interacted favourably, which was depicted through GC–MS analysis. The predicted binary logistic regression model will help the policy makers for epidemiological surveillance in malaria-prone areas worldwide when substantial climate variables create a circumstance favourable for malaria. From the in vitro and in silico studies, it can be concluded that the methanolic extract of M. alba S1 leaves were proven to have promising antiplasmodial activity. Thus, there is a scope for policy-driven approach for discovering and developing these lead compounds and undermining the rising resistance to the frontline anti-malarial drugs in the world.