Lime mortar is a complex mixture resulting from hardening of lime, water, and aggregates. Lime mortar was used from the time of the Roman Empire until the Industrial Revolution. The recipes used differ according to the period, geographical area of preparation, craftsman, or function. This is why the study of archaeological mortars is of such great importance in building archaeology. In this study, we used laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of three lime mortar samples with a µ-LIBS instrument, allowing elemental image compilation. These samples originate from three different geographical locations: Angers (France), Dardilly (France), and Pompeii (Italy), and were taken from buildings that had different functions: cathedral, aqueduct, and house, respectively. Thanks to image processing and the creation of masks, it was possible to extract not only the lime signature and nature of the aggregate but also its granulometry and circularity. All this information is essential for cultural heritage research. This study shows the potential of the LIBS technique in archaeometric analysis of archaeological mortars.