The identification of electronic entanglement in solids remains elusive so far, which is owed to the difficulty of implementing spinor-selective beam splitters with tunable polarization direction. Here, we propose to overcome this obstacle by producing and detecting a particular type of entanglement encoded in the Nambu spinor or electron-hole components of quasiparticles excited in quantum Hall edge states. Due to the opposite charge of electrons and holes, the detection of the Nambu spinor translates into a charge-current measurement, which eliminates the need for beam splitters and assures a high detection rate. Conveniently, the spinor correlation function at fixed effective polarizations derives from a single current-noise measurement, with the polarization directions of the detector easily adjusted by coupling the edge states to a voltage gate and a superconductor, both having been realized in experiments. We show that the violation of Bell inequality occurs in a large parameter region. Our work opens a new route for probing quasiparticle entanglement in solid-state physics exempt from traditional beam splitters.