Abstract:In the 1940s Charles Huggins reported remarkable palliative benefits following surgical castration in men with advanced prostate cancer, and since then the androgen receptor (AR) has remained the main therapeutic target in this disease. Over the past couple of decades, our understanding of AR-signaling biology has dramatically improved, and it has become apparent that the AR can modulate a number of other well-described oncogenic signaling pathways. Not surprisingly, mounting preclinical and epidemiologic data now supports a role for AR-signaling in promoting the growth and progression of several cancers other than prostate, and early phase clinical trials have documented preliminary signs of efficacy when AR-signaling inhibitors are used in several of these malignancies. In this article, we provide an overview of the evidence supporting the use of AR-directed therapies in prostate as well as other cancers, with an emphasis on the rationale for targeting AR-signaling across tumor types.Keywords: prostate cancer; breast cancer; bladder cancer; renal cell carcinoma; pancreatic cancer; ovarian cancer; hepatocellular cancer; ovarian cancer; endometrial cancer; androgen receptor
Androgen Receptor BiologyAndrogens, or male sex hormones, have a wide range of functions, including promoting the development of male secondary sexual characteristics, stimulating erythropoiesis, increasing metabolic rate, increasing bone density and stimulating libido [1]. In men, androgens are produced predominately by the testes, while the sole source of androgens in women are the adrenal glands. Consequently, women have considerably lower androgen levels compared to men. The normal physiologic function of androgens is a result of stimulating the androgen receptor (AR).The AR is a member of the nuclear hormone receptor family of transcription factors, which also includes the estrogen receptor (ER), glucocorticoid receptor (GR), progesterone receptor (PR) and others [2,3]. Like the other nuclear hormone receptors, transcription of AR target genes is induced by the receptor binding androgenic ligands. Canonical AR-signaling involves a well-described series of events, including: (1) AR binding to androgens; (2) dissociating from heat-shock proteins; (3) translocating to the nucleus and the formation of AR homodimers; (4) binding to androgen response elements (AREs) within the promoter region of AR target genes; (5) recruitment of coactivators; and (6) transcription of target genes [4].In addition to its normal physiologic role, prostatic adenocarcinomas remain dependent on AR-signaling even at later stages. Supporting the importance of AR to prostate cancer biology is the observation that AR target genes (e.g., PSA) are usually expressed even in men progressing on androgen deprivation therapy (ADT), with AR pathway alterations commonly observed in late stage