Angiotensin (Ang) II is widely known for its role in the control of systemic blood vessels. Moreover, Ang II acts on the vascular control of ovarian function, corpus luteum formation, and luteolysis. Over the past 10 years, our research group has been studying the new concept of the renin-angiotensin system (RAS) as an autocrine/paracrine factor regulating steroidogenesis and promoting different cellular responses in the ovary, beyond vascular function. We have developed and used different in vivo and in vitro experimental models to study the role of RAS in the ovary and a brief overview of our findings is presented here. It is widely accepted that there are marked species differences in RAS function in follicle development. Examples of species-specific functions of the RAS in the ovary include the involvement of Ang II in the regulation of follicle atresia in rats vs the requirement of this peptide for the dominant follicle development and ovulation in rabbits and cattle. More recently, Ang-(1-7), its receptor, and enzymes for its synthesis (ACE2, NEP, and PEP) were identified in bovine follicles, implying that Ang-(1-7) has an ovarian function. Other novel RAS components (e.g. (pro)renin receptor and renin-binding protein) recently identified in the bovine ovary show that ovarian RAS is poorly understood and more complex than previously thought. In the present review, we have highlighted the progress toward understanding the paracrine and autocrine control of ovarian antral follicle development and ovulation by ovarian tissue RAS, focusing on in vivo studies using cattle as a model.