The terahertz (THz) metasurfaces that support bound states in the continuum (BICs) provide a promising platform for various applications due to their high Q-factor resonance. In this study, we experimentally demonstrate multiple BICs with different resonance symmetries in the THz metasurface based on mode coupling. The proposed metasurface is composed of 2 × 2 split ring resonators (SRRs) metamolecules. The SRRs of two different gap angles in the metamolecule lattice provide intrinsic resonance with different frequencies, and the coupling between them exhibits high transmission quasi-BIC resonance, which can be tuned by varying the gap angle. The arrangement of SRRs in the 2 × 2 metamolecule lattice determines the types of coupling that govern the resonance symmetry of quasi-BIC. More interestingly, the multiple quasi-BICs enabled by different couplings can be simultaneously achieved in a metasurface. Apart from tuning the gap angles, the permittivity in the vicinity of SRRs also changes the resonance frequency. Consequently, quasi-BIC can be artificially formed by deliberately constructing the permittivity difference of the dielectric environment on the SRRs. In view of this, we introduce the scheme of permittivity retrieval for the dispersive analyte, assisted by the fixed-permittivity gratings. In addition, we experimentally demonstrate the metasurface in combination with the microfluidic chip for the sensing of the glucose solution concentration. Our findings offer a possible strategy for the existing manufactured metasurface to achieve quasi-BIC resonance and provide a promising candidate for approaching the spectral analysis of the biochemical.