Transparent ceramics are usually polycrystalline materials, which are wildly used in many optical applications, such as lasers. As of today, the fabrication of transparent ceramic structures is still limited to conventional fabrication methods, which do not enable the formation of complex structures. A new approach for 3D printing of micrometer‐size, transparent ceramic structures is presented. By using a solution of metal salts that can undergo a sol–gel process and photopolymerization by two‐photon printing, micrometer‐sized yttrium aluminum garnet (YAG) structures doped with neodymium (Nd) are fabricated. The resulting structures are not only transparent in the visible spectrum but can also emit light at 1064 nm due to the doping with Nd. By using solution‐based precursors, without any particles, the sintering can be performed under air at ambient pressure and at a relatively low temperature, compared to conventional processes for YAG. The crystalline structure is imaged at atomic resolution by ultrahigh‐resolution scanning transmission electron microscopy (STEM), indicating that the doped Nd atoms are located at the yttrium positions. Such miniaturized structures can be used for diverse applications, e.g., optical components in high‐intensity laser systems, which require heat resistance, or as light sources in optical circuits.
Organic–inorganic hybrid perovskites have emerged in recent years as a promising alternative to silicon solar cells and other optoelectronic devices, mostly due to their high photon yields, long carrier lifetime, adjustable bandgap, and other merits. While patterning photonic nanostructures onto their inorganic counterparts is well established to augment their capabilities, lack of compatibility with conventional lithography techniques hinders the implementation of those principles with perovskites. Hereby, the fabrication of MAPbI3 nanophotonic structures such as nanoscale metasurfaces is demonstrated via soft lithography, a method in which the patterning is done when the perovskite is not fully crystallized, allowing for crystallization within the mold with the end result of facile and unharmful imprinting of sub‐micron features onto perovskite thin films, over large areas and with the potential to scale up in a seamless way. By doing so, a substantial increase in light absorption as well as twofold photoluminescence enhancement from the perovskite thin film is shown. These results are supported by spectral and lifetime measurements. This method is pertinent to many device configurations and can assist in realizing the future of high‐efficiency perovskite‐based devices, including solar cells, LEDs, lasers, and more.
Cavities are the building blocks for multiple photonic applications from linear to nonlinear optics and from classical optics to quantum electrodynamics. Hyperbolic metamaterial cavities are one class of optical cavities that have recently been realized and shown to possess desirable characteristics such as engineered refractive indices and ultrasmall mode volumes, both beneficial for enhancement of light−matter interactions at the nanoscale. We hereby report the design, fabrication, and experimental characterization of nanoscale hyperbolic metamaterial cavities at the visible frequency. We show experimentally that these nanocavities enhance the light− matter interaction at the nanoscale and demonstrate increased photonic density of states and enhanced free space radiation efficiency of quantum dots coupled to such cavities, thus demonstrating the importance of hyperbolic metamaterial cavities for applications in solid-state light sources, quantum technologies, and cavity quantum electrodynamics.
Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.
We demonstrate experimentally the realization and the characterization of a chip-scale integrated photodetector for the near-infrared spectral regime based on the integration of a MoSe2/WS2 heterojunction on top of a silicon nitride waveguide. This configuration achieves high responsivity of ~1 A W−1 at the wavelength of 780 nm (indicating an internal gain mechanism) while suppressing the dark current to the level of ~50 pA, much lower as compared to a reference sample of just MoSe2 without WS2. We have measured the power spectral density of the dark current to be as low as ~1 × 10−12 A Hz−0.5, from which we extract the noise equivalent power (NEP) to be ~1 × 10−12 W Hz−0.5. To demonstrate the usefulness of the device, we use it for the characterization of the transfer function of a microring resonator that is integrated on the same chip as the photodetector. The ability to integrate local photodetectors on a chip and to operate such devices with high performance at the near-infrared regime is expected to play a critical role in future integrated devices in the field of optical communications, quantum photonics, biochemical sensing, and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.