Metasurfaces have seen a great evolution over the last few years, demonstrating a high degree of control over the amplitude, phase, polarization, and spectral properties of reflected or transmitted electromagnetic waves. Nevertheless, the inherent limitation of static metasurface realizations, which cannot be controlled after their fabrication, engages an ongoing pursuit for reconfigurable metasurfaces with profound tunability. In this paper, we mitigate this grand challenge by demonstrating a new method for free-space rapid optical tunability and modulation, utilizing a planar aluminum nanodisk metasurface coated with indium tin oxide (ITO) on a thin film of lithium niobate (LiNbO) with a chromium/gold (Cr/Au) substrate. Resonance coupling gives rise to an enhanced, confined electromagnetic field residing in the thin film, leading to a narrow and high contrast dip in reflectance of around 1.55 μm. The precise spectral position of this resonance is tuned using the electro-optic Pockels effect by applying an electric bias voltage across the thin film of LiNbO. By doing so, we show that we can likewise modulate the optical reflectance from the metasurface around a wavelength of 1.54 μm. Following that, we experimentally demonstrate a free-space, planar optical modulator with a modulation depth of 40%. The device paves the way for the integration of metasurfaces in applications requiring tunable optical components such as tunable displays, spatial light modulators for advanced imaging, free-space communication, beam scanning LIDARs with no moving parts, and more.
The coupling of atomic and photonic resonances serves as an important tool for enhancing light‐matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic‐cladding wave guides, the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator is experimentally demonstrated. Specifically, cavity‐atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances is observed. Moreover, significant enhancement of the efficiency of all optical switching in the V‐type pump‐probe scheme is demonstrated. The coupled system of micro‐ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, and Purcell enhancement.
We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguide configuration represents a silicon nitride ridge atop a thin strip of metal, which is positioned on a partially oxidized layer of silicon supported by a silicon oxide layer. The demonstrated waveguides feature reasonable mode confinement (~0.5μm2) and show rather long propagation (~700 μm) at telecom wavelengths. Owing to the existence of a metal strip within the structure, one can envision the co-propagation of electrical and photonic signals within the structure, enabling thereby seamless integration of photonic and electronic circuits. Electrical signals in metal strips supporting plasmonic modes can be used for variety of applications, e.g. to control the propagation of radiation via the thermo-optic effect.
Non-Hermitian systems have recently attracted significant attention in photonics. One of the hallmarks of these systems is the possibility of realizing asymmetric mode switching and omni-polarizer action through the dynamic encirclement of exceptional points (EP). Here, we offer a new perspective on the operating principle of these devices, and we theoretically show that asymmetric mode switching can be easily realized -with the same performance and limitationsusing simple configurations that emulate the physics involved in encircling EP's without the complexity of actual encirclement schemes. The proposed concept of "encirclement emulators" may allow a better assessment of practical applications of non-Hermitian photonics.
We demonstrate experimentally the realization and the characterization of a chip-scale integrated photodetector for the near-infrared spectral regime based on the integration of a MoSe2/WS2 heterojunction on top of a silicon nitride waveguide. This configuration achieves high responsivity of ~1 A W−1 at the wavelength of 780 nm (indicating an internal gain mechanism) while suppressing the dark current to the level of ~50 pA, much lower as compared to a reference sample of just MoSe2 without WS2. We have measured the power spectral density of the dark current to be as low as ~1 × 10−12 A Hz−0.5, from which we extract the noise equivalent power (NEP) to be ~1 × 10−12 W Hz−0.5. To demonstrate the usefulness of the device, we use it for the characterization of the transfer function of a microring resonator that is integrated on the same chip as the photodetector. The ability to integrate local photodetectors on a chip and to operate such devices with high performance at the near-infrared regime is expected to play a critical role in future integrated devices in the field of optical communications, quantum photonics, biochemical sensing, and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.