Ovaricetomized (OVX) animals represent an optimal model to investigate bone loss in osteoporosis. To further elucidate the underlying mechanisms of decreased bone formation and increased bone resorption following OVX, we conducted gene expression profiling experiments using bone samples of ovariectomized C57BL/6J mice. Following OVX, genes involved in immune response, cell cycle regulation, growth, apoptosis and bone resorption were upregulated, while genes that are important for regular cell processes, mitosis, metabolism of carbohydrates, extracellular matrix structure, angiogenesis, skeletal development and morphogenesis were downregulated. Among bone specific genes we observed upregulation of interleukin 7 (IL-7), IL-7 receptor and matrix metallopeptidase 8, while genes such as transforming growth factor-beta 3, procollagen type I and procollagen type VI exhibited marked decrease in expression. We also observed downregulation of two genes, parathyroid hormone receptor 1 and WD repeat domain 5, that are involved in skeletal development but were not previously reported to be altered in osteoporosis. We further performed gene set enrichment analysis (GSEA) in order to calculate enrichment of pathways specifically altered in murine bones following ovariectomy. In conclusion, OVX greatly influences expression of various genes involved in diverse biological processes confirming the notion that numerous pathways play an important role in pathophysiology of osteoporosis.