Nanoparticles are materials that are on the order of one billionth of a meter in size and particles of such small size behave in very unique ways allowing them to exhibit many properties important to industrial and scientific applications. These properties rely on the fact that the nanoparticles exist as individual structures, not combined with its neighboring particles. Hence, here we conduct modifications on an existing model such that the stability of a specific type of nanoparticle can be theoretically predicted. Spectroscopy or the study of the interactions between light and matter is important in many chemical analyses. Metal nanoparticles are widely used to increase the efficiency of the above light-matter interactions thereby allowing to efficiently identify chemical species, determine their structure, and understand how they behave under given conditions. Here, we use gold nanoparticles to demonstrate that this interesting characteristic of metal nanoparticles can be extended into novel scientific techniques, allowing increased efficiency in identifying or even understanding chemical substances. Preparation of competent nanoparticles for such applications is important, but at the same time challenging. Here we demonstrate a new method of preparing gold nanoparticle that are shaped in the form of stars, hence being named 'nanostars'. The prepared nanostars demonstrate many unique, interesting, and tunable properties, suggesting their efficient applicability in many scientific applications. The overall understanding attained in the series of investigations conducted here, will be imperative in the design, preparation, and application of new and exciting forms of nanoparticles in many novel scientific applications.