Covalently functionalized gold nanoparticles influence capillary electrophoresis separations of neurotransmitters in a concentration and surface chemistry-dependent manner. Gold nanoparticles with either primarily covalently functionalized carboxylic acid (Au@COOH) or amine (Au@NH 2 ) surface groups are characterized using extinction spectroscopy, transmission electron microscopy, and zeta potential measurements. The impact the presence of nanoparticles and their surface chemistry is investigated, and at least three nanoparticle-specific mechanisms are found to effect separations. First, the degree of nanoparticle-nanoparticle interactions is quantified using a new parameter termed the critical nanoparticle concentration (CNC). CNC is defined as the lowest concentration of nanoparticles that induces predominant nanoparticle aggregation under specific buffer conditions and is determined using dual-wavelength photodiode array detection. Once the CNC has been exceeded, reproducible separations are no longer observed. Second, nanoparticleanalyte interactions are dictated by electrostatic interactions which depend on the pK a of the analyte and surface charge of the nanoparticle. Finally, nanoparticle-capillary interactions occur in a surface chemistry dependent manner. Run buffer viscosity is influenced by the formation of a nanoparticle steady-state pseudo-stationary phase along the capillary wall. Despite differences in buffer viscosity leading to changes in neurotransmitter mobilities, no significant changes in electroosmotic flow were observed. As a result of these three nanoparticle-specific interactions, Au@NH 2 nanoparticles increase the mobility of the neurotransmitters while a smaller opposite effect is observed for Au@COOH nanoparticles. Understanding nanoparticle behavior in the presence of an electric field will have significant impacts in separation science where nanoparticles can serve to improve either the mobility or detection sensitivity of target molecules.
Surface chemistry variations on alkanethiol-modified gold nanoparticles (i.e., packing density, tilt angle, and composition) influence their function in nanotechnology-based applications. Accurate theoretical predictions of the stability of functionalized nanoparticles enable guided design of their properties but are often limited by the accuracy of the parameters used as model inputs. These parametrization limitations for the extended Derjaguin, Landau, Verwey, and Overbeek (xDLVO) theory are overcome using a size-dependent Hamaker constant for gold, interfacial surface potentials, and the tilt angles of self-assembled monolayers (SAMs), which improve the predictive power of xDLVO theory for modeling nanoparticle stability. Measurements of the electrical properties of gold nanoparticles functionalized with a series of thiolated acids of differing ligand lengths and SAM tilt angles validate the predictions of xDLVO theory using these new parametrizations, illustrating the potential for this approach to improve the design and control of the properties of functionalized gold nanoparticles in various applications.
Self-assembled monolayer (SAM) modification is a widely used method to improve the functionality and stability of bulk and nanoscale materials. For instance, the chemical compatibility and utility of solution-phase nanoparticles are often improved using covalently bound SAMs. Herein, solution-phase gold nanoparticles are modified with thioctic acid SAMs in the presence and absence of salt. Molecular packing density on the nanoparticle surfaces is estimated using X-ray photoelectron spectroscopy and increases by ~20% when molecular self-assembly occurs in the presence vs. the absence of salt. We hypothesize that as the ionic strength of the solution increases, pinhole and collapsed-site defects in the SAM are more easily accessible as the electrostatic interaction energy between adjacent molecules decreases thereby facilitating the subsequent assembly of additional thioctic acid molecules. Significantly, increased SAM packing densities increase the stability of functionalized gold nanoparticles by a factor of two relative to nanoparticles functionalized in the absence of salt. These results are expected to improve the reproducible functionalization of solution-phase nanomaterials for various applications.
Electrically driven separations which contain nanoparticles offer detection and separation advantages but are often difficult to reproduce. To address possible sources of separation inconsistencies, anionic functionalized gold nanoparticles are thoroughly characterized and subsequently included in continuous full filling capillary electrophoresis separations of varying concentrations of three small molecules. Citrate stabilized gold nanospheres are functionalized with 11-mercaptoundecanoic acid, 6-mercaptohexanoic acid, or thioctic acid self-assembled monolayers (SAMs) and characterized using dynamic light scattering, extinction spectroscopy, zeta potential, and X-ray photoelectron spectroscopy prior to use in capillary electrophoresis. Several important trends are noted. First, the stability of these anionic nanoparticles in the capillary improves with increased ligand packing density as indicated by a ratio of absorbance collected at 520 to 600 nm. Second, increasing nanoparticle concentration from 0 to 2 nM (0-0.002(5)%, w/w) minimally impacts analyte migration times; however, when higher nanoparticle concentrations are included within the capillary, nanoparticle aggregation occurs which induces separation inconsistencies. Third, analyte peak areas are most significantly impacted as their concentration decreases. These trends are attributed to both sample enrichment and electrostatic interactions between the anionic carboxylic acid functionalized gold nanoparticles and sample. These important findings suggest that sample concentration-induced conductivity differences between the sample matrix and separation buffer as well as SAM packing density are important parameters to both characterize and consider when nanoparticles are used during continuous full filling separations and their subsequent use to enhance spectroscopic signals to improve in-capillary analyte detection limits.
Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.