) #& %#" Under a layer of 0.1M HCl in isopropanol, soft UV (365 nm) photolysis of the thiol?on? gold self?assembled monolayer (SAM) derived from the lipoic acid ester of α?hydroxy?1?acetylpyrene results in the expected removal of the acetylpyrene protecting group. By photolyzing through a mask this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid catalyzed photo?removal of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol?on?gold SAM layers derived from other Ï? thiolated carboxylic acids. However, this phenomenon is chain?length dependent. Under conditions in which there is a ~60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter chain SAM layers are partially removed is not fully understood since these compounds do not absorb significantly in the 365nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol?on?gold SAMs needs to be used with caution.