The interplay between the linear elastic deformation up to 20% and the unique electronic properties of graphene nanostructures offers an attractive prospect to manipulate their properties by strain. Here we review the recent progress on the electronic response of graphene to the in-plane strains, including the strain-modulated electronic structure and the strain-modulated spin, valley and superconducting transports. A generalized Hamiltonian for a graphene was constructed subjected to arbitrary in-plane strains. The Hamiltonian is helpful to design and optimize the graphene-based nano-electromechanical systems (NEMS).