Graphene-the wonder material has attracted a great deal of attention from varied fields of condensed matter physics, materials science and chemistry in recent times. Its 2D atomic layer structure and unique electronic band structure makes it attractive for many applications. Its high carrier mobility, high electrical and thermal conductivity make it an exciting material. However, its applicability cannot be effectively realised unless facile techniques to synthesize high quality, large area graphene are developed in a cost effective way. Besides that a great deal of effort is required to develop techniques for modifying and opening its band structure so as to make it a potential replacement for silicon in future electronics. Considerable research has been carried out for synthesizing graphene and related materials by a variety of processes and at the same time a great deal of work has also taken place for manipulating and opening its electronic band structure. This review summarizes recent developments in the synthesis methods for graphene. It also summarizes the developments in graphene nanoribbon synthesis and methods to open band gap in graphene, in addition to pointing out a direction for future research and developments.