In the large-scale measurement field, deployment planning usually uses the Monte Carlo method for simulation analysis, which has high algorithm complexity. At the same time, traditional station planning is inefficient and unable to calculate overall accessibility due to the occlusion of tooling. To solve this problem, in this study, we first introduced a Poisson-like randomness strategy and an enhanced randomness strategy to improve the remora optimization algorithm (ROA), i.e., the PROA. Simultaneously, its convergence speed and robustness were verified in different dimensions using the CEC benchmark function. The convergence speed of 67.5–74% of the results is better than the ROA, and the robustness results of 66.67–75% are better than those of the ROA. Second, a deployment model was established for the large-scale measurement field to obtain the maximum visible area of the target to be measured. Finally, the PROA was used as the optimizer to solve optimal deployment planning; the performance of the PROA was verified by simulation analysis. In the case of six stations, the maximum visible area of the PROA reaches 83.02%, which is 18.07% higher than that of the ROA. Compared with the traditional method, this model shortens the deployment time and calculates the overall accessibility, which is of practical significance for improving assembly efficiency in large-size measurement field environments.