Plants can perceive a wide range of biotic attackers and respond with targeted induced defenses. Specificity in plant non-selfrecognition occurs either directly by perception of pest-derived elicitors or indirectly through resistance protein recognition of host targets that are inappropriately proteolyzed. Indirect plant perception can occur during interactions with pathogens, yet evidence for analogous events mediating the detection of insect herbivores remains elusive. Here we report indirect perception of herbivory in cowpea (Vigna unguiculata) plants attacked by fall armyworm (Spodoptera frugiperda) larvae. We isolated and identified a disulfide-bridged peptide ( ؉ ICDINGVCVDA ؊ ), termed inceptin, from S. frugiperda larval oral secretions that promotes cowpea ethylene production at 1 fmol leaf ؊1 and triggers increases in the defenserelated phytohormones salicylic acid and jasmonic acid. Inceptins are proteolytic fragments of chloroplastic ATP synthase ␥-subunit regulatory regions that mediate plant perception of herbivory through the induction of volatile, phenylpropanoid, and protease inhibitor defenses. Only S. frugiperda larvae that previously ingested chloroplastic ATP synthase ␥-subunit proteins and produced inceptins significantly induced cowpea defenses after herbivory. Digestive fragments of an ancient and essential plant enzyme, inceptin functions as a potent indirect signal initiating specific plant responses to insect attack.elicitor ͉ guard hypothesis ͉ indirect perception ͉ insect herbivory ͉ plant defense A mechanistic understanding and targeted improvement of plant resistance traits are recognized as essential in combating yield losses from crop pests. Plants can perceive and defensively respond to attack either directly by impeding pest growth or indirectly by promoting advantageous interactions with beneficial organisms (1-7). Great progress has been made in the identification of plant receptor-like kinase families mediating perception of biotic attack and the subsequent activation of signal transduction cascades spanning interactions of GTP binding proteins, mitogen-activated protein kinases, phytohormones, transcription factors, and ultimately induced biochemical defenses (2,8). Despite these advances, relatively few candidate elicitors and ligands responsible for the initiation and specificity of induced plant defenses to pest attack have been identified (1, 2). This void is especially acute in the case of insect herbivore perception and is surprising given both the significance of plant-insect interactions in arthropod and angiosperm evolution and the role of insects in facilitating plant pathogen entry (9, 10).Induced plant defenses are initiated in part by the direct perception of elicitors derived from offending organisms. For example, maize (Zea mays) and tobacco (Nicotiana attenuata) perceive insect attack through the direct detection of fatty acid amino acid conjugate (FAC) elicitors present in insect oral secretions (OS). Plants respond with indirect defenses in the form of indu...