A number of coating or matrix materials can be selected depending upon desired properties of the final microcapsule including stability and unaltered bioavailability, as well as compatibility with selected microencapsulation techniques and high encapsulation efficiency. Among them, proteins, sugars, starches, gums, lipids, and cellulose derivatives are most popular, as covered elsewhere ABSTRACT Plants that have antioxidant content have been shown to have efficacy on the body, antioxidants have several drawbacks including being sensitive to environmental factors such as light, heat, pH, and oxygen. Microencapsulation is a method that has several advantages including providing several benefits, namely microparticles formulated to protect the core from the environment, cover up discomfort, maintain volatility or cell survival, separate incompatible substances, protect the body from side effects, and optimize, extend, or target drug effects. The choice of the type of polymer used will determine the characteristics of the microparticles produced, therefore a suitable coating material is needed to produce the microparticles. This review article was made to find out the results of research conducted in the manufacture of microparticles by using polymers which are expected to be useful to provide information on the basis of the selection of polymers and methods of making microparticles produced to maintain the stability of substances that are efficacious as antioxidants. Based on the results of the literature search, microencapsulation is a method used to maintain the stability of antioxidant content that has a therapeutic effect.