In rats with induced diabetes, Zinc and curcumin treatment showed a significant increase of catalase and a significant decrease of glucose, lipid profile components and arylsulphatases activity compared to the untreated rats. We suggest that dietary zinc and curcumin are promising protective agents for reducing the metabolic defect of diabetes.
Dear Editor;Diabetes mellitus is a metabolic disease and the pathogenesis of diabetes mellitus is implicated in the oxidative stress and the generation of superoxide free radicals [1]. Various small molecules have been investigated for their ability to ameliorate the diabetes. One such molecule is curcumin (Cur) that has various health beneficial properties such as anti-inflammatory, anticarcinogenic, antiviral, hypolipidemic and antiinfectious activities [2,3]. The 2nd molecule is the zinc (Zn) salt as an essential trace element. The disturbances of its homeostasis seem to be associated not only with diabetes, but also with others [4]. Recently, it was reported that the lysosomal enzymes arylsulfatases were significantly changed in experimental diabetes [5]. In fact, the treatment of diabetes through food sources is valuable around the world. Therefore, the present study is undertaken to throw the light on the effect of Zn and Cur on rats with experimental diabetes rats through studying the effect on some lipid components and arylsulfatases as important parameters, which are implicated in different biological functions.Male albino rats (120-160 g Bwt) were kept on a balanced ration with water ad libitum for acclimatization. Experimental diabetes was induced in overnight fasted rats by intraperitoneal injection of a single dose of streptozotocin (STZ) as 60 mg/kg Bwt. Rats with a serum glucose level 218 mg/dl were considered as rats with diabetes. The daily intake of Zn sulfate (100 mg/kg Bwt) and was administrated orally in non-ionized water for 60 days. Cur was suspended in saline and administrated orally by a gavage 80 mg/kg Bwt Cur suspended daily in saline for 60 days. The rats were grouped randomly into eight equal groups as the non-diabetic (control group), the diabetic group, Zn non-diabetic group, Zn diabetic group, Cur non-diabetic group, Cur diabetic group. The last two groups that belong to Zn and Cur non-diabetic and diabetic group received 50 and 40 mg/kg Bwt, respectively as a daily for 60 days. The animals were deprived of food overnight and sacrificed by decapitation. Blood was collected from the eye canthus in tubes containing potassium oxalate and sodium fluoride mixture for estimation of plasma glucose (PG). Liver or pancreas tissues were weighed, homogenized in10 mM Tris HCl buffer, pH 7.0 and centrifuged at 4000 rpm for 15 min at 4°C. The clear supernatant was obtained to measure the activities of catalase [6], total protein [7] and both arylsulfatase A (ASA) and arylsulfatase B (ASB) [8]. ASA and ASB were fractionated by DEAE-cellulose chromatography as described previously [8]. Insulin was assayed in the homogenate of pancreas of all groups...