AIM:To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine.
METHODS:Representative human gut bacteria were collected from 20 healthy volunteers, and then utilized in vitro to biotransform aesculin under anaerobic conditions. At 0, 2,4,8,12,16, 24, 48 and 72 h postincubation, 10 mL of culture medium was collected. Metabolites of aesculin were extracted 3 × from rat urine with methanol and analyzed by HPLC. For in vivo metabolite analysis, aesculetin (100 mg/kg) was administered to rats via stomach gavage, rat urine was collected from 6 to 48 h post-administration, and metabolite analysis was performed by LC/ESI-MS and MS/MS in the positive and negative modes.
RESULTS:Human gut bacteria could completely convert aesculin into aesculetin in vitro . The biotransformation process occurred from 8 to 24 h post-incubation, with its highest activity was seen from 8 to 12 h. The in vitro process was much slower than the in vivo process. In contrast to the in vitro model, six aesculetin metabolites were identified in rat urine, including 6-hydroxy-7-glucocoumarin (M1), 6-hydroxy-7-sulf-coumarin (M2), 6, 7-digluco-coumarin (M3), 6-glc-7-gluco-coumarin (M4), 6-O-methyl-7-gluco-coumarin (M5) and 6-O-methyl-7-sulf-coumarin (M6). Of which, M2 and M6 were novel metabolites.
CONCLUSION: