Transglutaminase (TG)-catalyzed cross-linking of both intracellular and extracellular proteins is an important biochemical event. However, increased concentrations of cross-linked proteins have been observed in many disorders. Moreover, TG-catalyzed modification of proteins might generate new self-antigens responsible for the autoimmune response, as in celiac disease. The identification of available substrates may offer an understanding of how the TG-catalyzed post-translational modification has an impact on physiology and disease. We used a proteomic approach to identify TG-modified protein targets in human intestinal epithelial cells to determine the extent to which transglutaminase specifically contributes to celiac disease. Two probes were used for endogenous TG activity: 5-(biotinamido)pentylamine, which represents the acyl-acceptor, and a biotinylated glutamine-containing peptide, which represents the acyl-donor. This approach identified >25 proteins, which range from 30,000 to 300,000 Daltons and can serve as acyl-acceptor and/or acyl-donor for transglutaminase. Some of them were known transglutaminase substrates, whereas others had not been previously identified. These targets include proteins involved in cytoskeletal network organization, folding of proteins, transport processes, and miscellaneous metabolic functions.