Chlorogenic acid (CGA) is the ester of caffeic acid and quinic acid and plays an important role in antibacterial activity and anti-inflammatory properties. The objective of this study was to examine the effects of CGA on the growth of Staphylococcus aureus and the mRNA levels of the genes encoding the inflammatory response cytokines, κ-casein, and neutrophil function in bovine mammary epithelial cells (BMEC) exposed to S. aureus. Chlorogenic acid has important antibacterial, antioxidant, and anti-inflammatory functions; however, the effect of CGA on BMEC and neutrophils exposed to S. aureus has not been investigated previously. Our results demonstrated that 10, 20, and 30 μg/mL CGA had no cytotoxic effects on BMEC in culture, and that 20 μg/mL CGA enhanced the viability of BMEC exposed to S. aureus, whereas 30 μg/mL CGA reduced S. aureus growth after 9 h compared with controls. The rate of S. aureus invasion into BMEC was also attenuated by 30 μg/mL CGA compared with controls, whereas this treatment led to reduced abundance of IL6, IL8, and TLR2 mRNA in S. aureus-exposed BMEC. Migration of bovine polymorphonuclear leukocytes was significantly decreased in S. aureus-exposed BMEC with 10 and 20 μg/mL CGA treatment when compared with S. aureus treatment alone. In addition, incubation with 20 or 30 μg/mL CGA enhanced the phagocytic ability of polymorphonuclear leukocytes compared with the control group. Importantly, levels of κ-casein were enhanced by treatment of S. aureus-exposed BMEC with CGA. Our results suggest that the use of CGA may be a potent therapeutic tool against bovine mastitis caused by S. aureus.