The pollution of ecosystems as a result of urbanization, industrialization and poor agricultural practices is becoming increasingly alarming. This has a major impact on health and the economy. This pollution causes illness in humans and animals, even at low levels of exposure, leading to endocrine disorders, congenital malformations, cardiovascular disease, nervous system damage and cancer. They are a brake on redevelopment because of the threats they pose, generally causing an anaerobic environment by blocking the diffusion of air into the soil pores, thus affecting the microbial communities living there and preventing the infiltration of water necessary for plant growth. In an ecosystem subjected to various disturbances, changes can be observed in ecosystem structure and function, including loss of aesthetic values, changes in biomass or productivity, and changes in species composition. These include loss of aesthetic values, changes in biomass or productivity, and altered species composition, as a result of habitat loss, disruption of food webs and variations in macro-and micro-climatic environmental conditions. Respect for the environment is becoming a major concern in today's society. To remedy this, the concept of biological control was used as an alternative, with the selection of microorganisms of bioremediator interest. Twenty (20) isolates, including 10 (50%) from the Pseudomonas genus and 10 (50%) from the Bacillus genus, were isolated from landfills, identified and tested to assess their biofertilization (phosphate solubilization) and depollution (hydrocarbon degradation) potential, and to inhibit the growth of certain microorganisms. The results showed that all Pseudomonas and Bacillus isolates solubilized inorganic