The Indian bhant tree,
Clerodendron infortunatum
L. (Lamialus: Lamiaceae), is a well-known medicinal plant, but little information about its bioefficacy against agricultural pests exists. This scarcity was addressed in the present study, in which dried leaves of
C. infortunatum
were subjected to extraction with hexane and methanol and then partitioned using different solvents of varying polarity. In a preliminary bioassay, the antifeedant effects of the crude extracts and fractions were tested on a highly polyphagous pest, the cotton bollworm,
Helicoverpa armigera
Hübner (Lepidoptera: Noctuidae), using the no-choice test method with cabbage leaf discs. The methanol fraction resulted in maximum antifeedant activity. This fraction was further subjected to crystallization and column chromatography in order to isolate the compounds responsible for the activity. Three pure compounds were isolated and identified as clerodin (CL), 15-methoxy-14, 15-dihydroclerodin (MD), and 15-hydroxy-14, 15-dihyroclerodin (HD). The antifeedant activity of these compounds was studied using a choice as well as a no-choice test method with 24 and 48 hr observation periods. Insecticidal activity was measured using the topical application method at 0.5, 1, 1.5, 2, 2.5, and 3% concentrations, and data were recorded 24, 48, and 72 hr after treatment. In the no-choice test conditions, compounds CL and MD showed significantly higher antifeedant activity compared to the key ingredient in many commercial pesticides, azadirachtin, at its highest concentration. Compound HD also showed very good antifeedant activity, which did not differ significantly from that of azadirachtin. In the choice test conditions, all three compounds and azadirachtin showed 100% antifeedant activity at the highest concentration. Antifeedant Index (AI50) values of CL, MD, and HD were 6, 6, and 8 ppm in choice tests, and increased to 8, 9, and 11 ppm in the no-choice tests, respectively. Insecticidal activity of the isolated compounds was not significant compared to the control condition, even at the highest con-concentrations of the compounds. These results suggest that extracts of
C. infortunatum
have very good antifeedant effects against
H. armigera
due to the presence of specific compounds. These compounds could be utilized in the development of new biopesticides.