Background. Vulvovaginal candidiasis caused by Candida species is a prevalent fungal infection among women. It is believed that the pathogenesis of Candida species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. Methods. We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Results. Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by the non-Candida albicans species (33%). All C. albicans complex isolates were confirmed as C. albicans by HWP-PCR, and all isolates of the C. glabrata complex were revealed to be C. glabrata sensu stricto using the multiplex PCR method. FLC resistance was observed in 23.4% of C. albicans and 7.7% of C. glabrata. The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.