Due to distinguishing characteristics of nanoparticles (NPs) in terms of size, shape, chemical composition, transmittal and different applications, nanotechnology is considered as an interesting domain of research. Application of metallic NPs is important because of the diminution of dimensions and thus the unique thermal, optical and electronic properties. This research attempts to explore the synthesis of zinc oxide NPs. Zinc oxide NPs have been synthesized using cherry extract under different pH, temperature and concentration and then optimum conditions for the synthesis of them were determined. For further investigations, UV-Vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier infrared transformation spectroscopy (FTIR) were used. The solution containing zinc oxide NPs showed a major absorbance of 378 nm which confirmed the synthesis of zinc oxide NPs, and spherical morphology of NPs was observed in SEM images. Zinc oxide NP sizes were 6.5 and 20.18 nm which are obtained by UV-Vis spectra and XRD spectrum, respectively. Also, based on the FTIR spectra of the extract obtained before and after the synthesis, the existence of the reducing agents in herbal extract was confirmed. According to this study, the biological synthesis of NPs using plant extracts can be considered as a cost-effective and efficient method of biological synthesis of NPs and it could be an appropriate replacement to typical chemical methods for the synthesis of NPs.
Background In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. Results Here, we reared domesticated salmon ( mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. Conclusions Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate. Electronic supplementary material The online version of this article (10.1186/s12863-019-0745-9) contains supplementary material, which is available to authorized users.
Self-organized iron oxide nanotubes were successfully prepared on the iron foils by a simple electrochemical anodization method in NH 4 F organic electrolyte. The Fe 2 O 3 nanotubes were characterized by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-vis absorbance spectra, and X-ray diffraction spectroscopy. Scanning electron microscopy images show that dependent upon the anodizing time, the pore diameters range from 30 to 45 nm. Crystallization and structural retention of the synthesized structure are achieved upon annealing the initial amorphous sample in oxygen atmosphere at 450°C for 1 h. The crystallized nanoporous film, having a 2.04 eV bandgap, exhibited a maximum photocurrent density of 0.68 mA cm -2 in 1 M NaOH at 0.5 V versus Ag/AgCl. The current potential characteristics showed that the water-splitting photocurrent strongly depends on the anodizing time and its increases with anodization time.
Introduction: The aim of this study was to evaluate some virulence factors in Candida albicans isolates from patients with onychomycosis and determine the correlation between these factors and the antifungal resistance profile. Methods: Seventy species of C. albicans were confirmed using polymerase chain reaction amplification of the HWP1 gene. According to the Clinical & Laboratory Standards Institute guidelines, the susceptibility profile of four antifungal agents was investigated, and the production of aspartyl protease, phospholipase, haemolysin, and biofilm was determined. The correlation between these profiles was also investigated. Results: The isolates indicated different levels of resistance and production of virulence factors. Significant correlations were observed between the minimum inhibitory concentration (MIC) of fluconazole/itraconazole and biofilm production, between phospholipase production and fluconazole/ itraconazole MIC, and between fluconazole MIC and hemolytic activity in C. albicans isolates. The results also showed significant correlations between phospholipase activity and biofilm production. Conclusions: Our findings will contribute to a better understanding of the pathogenesis of C. albicans and characterize the relationship between virulence factors and antifungal resistance, which may suggest new therapeutic strategies considering the possible involvement of the virulence mechanism in the effectiveness of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.