CD45, a type I transmembrane protein tyrosine phosphatase expressed on nucleated hemopoietic cells, is prominently involved in T cell activation. Ligation of CD45RB isoforms has been associated with transplant tolerance. A recent genotyping analysis of asthma indicates a correlation with CD45 splicing. In this study, we administered an anti-CD45RB mAb (aCD45) in a murine model of allergic asthma and found that CD45RB ligation decreases allergic responses. aCD45 decreases allergen-induced pulmonary eosinophilia, bronchoalveolar lavage IL-13, IgE, and airway responses. Also, aCD45 increases the expression of CTLA4, a negative regulator of T cell activation. Furthermore, CD45RB signals no longer decrease allergic inflammation when CTLA4 is inhibited. These data support a role for CTLA4 in CD45RB-mediated inhibition of allergic inflammation. T cells and splenocytes stimulated with aCD45 exhibited increased CTLA4 levels, and analysis of CTLA4 promoter gene constructs identified a CD45RB-inducible regulatory region localized from −335 to –62 bp relative to the transcription start site. Together, these findings suggest that CD45RB signals mediate a novel role in the modulation of allergic inflammation, orchestrated by T cells through induction of CTLA4 transcription.