The molecular mechanisms underlying the increase of natural killer (NK) cell anticancer activity mediated by interleukin (IL)-10 have not been elucidated. The aim of this study was to identify potential molecular mediators of IL-10 stimulatory effects by exploring the NK cell gene display induced by this cytokine. Gene profile was determined by high-throughput cDNA microarray and quantitative real-time PCR. In vitro, NK cells resting or conditioned with IL-10 were tested for cytotoxicity, migration and proliferation. IL-10 enhanced mRNA levels of cell activation/cytotoxicity-related genes (eg secretogranin, TIA-1, HMG-1, interferon-inducible genes) not upregulated by IL-2. In line with these findings, IL-10 increased NK cell in vitro cytotoxicity against Daudi cells. Unlike IL-2, IL-10 did not show any significant effect on NK cell in vitro proliferation and migration. However, gene profile analysis showed that IL-10 increased the expression of cell migration-related genes (eg L-selectin, vascular endothelium growth factor receptor-1, plasminogen activator, tissue; formyl peptide receptor, lipoxin A4 receptor), which might support a stimulatory effect not evident with the in vitro functional assay. Overall, gene profiling allowed us to formulate new hypotheses regarding the molecular pathways underlying the stimulatory effects of IL-10 on NK cells, supporting further investigation aimed at defining its role in cancer immune rejection.