This study investigated silver nanoparticle (SNP)/titanium dioxide polyethylene films as chemical preservative substitutes to increase the shelf life of oil cake. The research examined three types of packaging films: standard low-density polyethylene (LDPE), LDPE with 3% SNP, and LDPE with 5% SNP, and assessed their impact on oil cake shelf life. Analysis of packaging films included scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy. The study evaluated the effects of SNP on chemical and microbial stability on oil cakes in different storage days (1st, 15th, 30th, and 37th days) at 25 °C. Parameters such as moisture content, water vapor permeability, water activity, peroxide, fat acidity, texture, and microorganisms were studied. The results demonstrated that SNP-containing films can extend the shelf life of oil cake up to 37 days, marked by a significant decrease in microbial growth, particularly mold, compared to conventional packaging films. Notably, films with 5% SNP concentrations exhibited the highest efficacy in preserving the quality of the oil cake. Higher concentrations of SNP led to an increased reduction in microbial load and enhanced mold control while maintaining favorable quality assessment indices throughout the storage period from day 1 to day 30. Remarkably, oil cake packaged with a 5% SNP polymer film displayed the most promising outcomes, extending shelf life up to 30 days at 25 °C.