There is great potential to use free nitrous acid (FNA), the protonated form of nitrite (HNO2), as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms.However, the antimicrobial mechanism of FNA is largely unknown. The overall objective of this thesis is to elucidate the responses of two model bacteria, namely Psuedomonas aeruginosa PAO1and Desulfovibrio vulgaris Hildenborough, in wastewater treatment in terms of microbial susceptibility, tolerance and resistance to FNA exposure.The effects of FNA on the opportunistic pathogen P. aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction through anaerobic respiration, were determined. It was revealed that the antimicrobial effect of FNA is concentration-determined and population-specific. By applying different levels of FNA, it was seen that 0.1 to 0.2 mg N/L FNA exerted a temporary inhibitory effect on P. aeruginosa PAO1 growth, while complete respiratory growth inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. Differential killing by FNA in the P. aeruginosa PAO1 subpopulations was detected, suggesting intra-strain heterogeneity. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to P. aeruginosa PAO1 showing cell growth.To further understand the inhibitory mechanisms of FNA on the model denitrifier P. aeruginosa PAO1 in wastewater treatment, genome-wide transcriptome analyses, coupled with a suite of physiological detections were conducted. The responses of P. aeruginosa PAO1 were detected in the absence and presence of an inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. Respiration was likely inhibited as denitrification activity was severely depleted in terms of decreased transcript levels of most denitrification genes. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in FNA exposed cultures. Meanwhile P. aeruginosa PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product to survive the FNA stress.Moreover, protein synthesis was significantly decreased while ribosomes were preserved. These findings improved our understanding of P. aeruginosa PAO1 in response to FNA.Hydrogen sulfide produced by sulfate reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide induced concrete corrosion. FNA was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, knowledge of the antimicrobial mechanisms of FNA are largely unknown. Here we report the II multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining growth, physiological and gene expression responses to FNA exposure. The activities of growth, respiration and ATP ge...