Hernias occur when part of an organ, typically the intestines, protrudes through a disruption of the fascia in the abdominal wall, leading to patient pain, discomfort, and surgical intervention. Over one million hernia repair surgeries occur annually in the USA, but globally, hernia surgeries can exceed 20 million. Standard practice includes hernia repair mesh to help hold the compromised tissue together, depending on where the fascial disruption is located and the patient’s condition. However, the recurrence rate for hernias after using the most common type of hernia mesh, synthetic, is currently high. Physiological-level electrical stimulation (ES) has shown beneficial effects in improving healing in soft tissue regeneration. Piezoelectric materials can produce low-level electrical signals from mechanical loading to help speed healing. Combining the novelty of piezo elements to create an electrically active hernia repair mesh for faster healing prospects is explored in this study through simulated transcutaneous mechanical loading of the piezo element with therapeutic ultrasound. A tissue phantom was developed using Gelatin #0 and Metamucil® to better simulate a clinical application of the therapeutic ultrasound loading modality. The cellular viability of varying ultrasound intensities and temporal effects was analyzed. Overall, minimal cytotoxicity was observed across all experimental groups during the ultrasound intensity and temporal viability studies.