Co, Ni, Cu, Zn, Hg) and metalloids from group 13-16 of the periodic table (e.g., Al, Ga, As, Sn, Sb, Pb, Bi) have increasingly Copper (Cu) and its alloys have been shown to eradicate a wide range of multidrug-resistant microbes upon direct contact. In this study, a facile one-step laser texturing (LT) process is demonstrated to effectively enhance the bactericidal properties of copper surfaces via concurrent selective modification of surface topography and chemistry of laser textured copper (LT-Cu). Surface morphology and elemental composition are analyzed via field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Surface area and pore size of LT-Cu is determined by Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) analysis. It reveals direct formation of mesoporous structures with higher surface oxide (Cu 2 O and CuO), which provide a highly stable superhydrophilic property to the LT-Cu surfaces. The antibacterial properties of LT-Cu are tested against pathogenic bacterial strains with different concentrations including Pseudomonas aeruginosa, and methicillinresistant Staphylococcus aureus (MRSA USA300) at 10 5 CFU mL −1 , and Escherichia coli and Staphylococcus aureus at high bacterial concentrations of 10 8 CFU mL −1 using standard contact killing tests. The analysis shows that LT-Cu needs 40, 90, 60, and 120 min to completely eradicate the respective bacterial strain. The LT-Cu causes membrane damage to the bacterial cells immediately after exposure. Furthermore, the biocompatibility of LT-Cu is investigated by in vitro immune-staining assays with mammary stromal fibroblasts and T4-2 cells.
In this paper, we present a novel laser-induced oxidation procedure for in situ formation of nickel oxide nanoporous structures directly onto the nickel surface as a highly sensitive nonenzymatic glucose sensor. The formation of mesoporous nickel oxide is confirmed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Electrochemical properties of the pristine and laser-induced oxidized nickel (LIO-Ni) films were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The unique three-dimensional mesoporous architecture of the oxide film on the LIO-Ni electrode resulted in a dramatic enhancement in electrochemical reduction/oxidation performance with a 10-fold increase in electrocatalytic activity for nonenzymatic glucose oxidation as compared to the pristine-Ni electrode. The LIO-Ni biosensor performance was successfully examined for the amperometric detection of glucose over a wide concentration range from 5 μM to 1.1 mM with a high linear sensitivity of 5222 μA mM −1 cm −2 . The limit of detection was obtained as low as 3.31 μM with a signal-tonoise ratio of 3. Furthermore, the LIO-Ni electrode showed outstanding long-term stability, reproducibility, and high selectivity in the presence of various interfering agents including uric acid, L-ascorbic acid, acetaminophen, glutamic acid, and citric acid. The demonstrated laser-induced oxidation process can be potentially adapted to the scalable manufacturing of a wide range of other easyto-use and robust metal oxide-based sensors for nonenzymatic biosensing applications.
This work describes the preparation, characterization and use of a nickel oxide/oxyhydroxide-printed carbon electrode as an efficient potentiometric phosphate sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.