As a result of its domestication, breeding and subsequent commercialization, African violet (Saintpaulia ionantha H. Wendl.) has become the most famous and popular Saintpaulia species. There is interest in producing cultivars that have increased resistance to pests and low temperature, in the introduction of novel horticultural characteristics such as leaf shape, flower colour, size and form, and in improved productivity and enhanced flower duration in planta. In African violet, techniques such as the application of chemical mutagens (ethylmethanesulfonate, N-nitroso-N-methylurea), radiation (gamma (γ)-rays, X-rays, carbon ion beams) and colchicine have been successfully applied to induce mutants. Among these techniques, γ radiation and colchicine have been the most commonly applied mutagens. This review offers a short synthesis of the advances made in African violet breeding, including studies on mutation and somaclonal variation caused by physical and chemical factors, as well as transgenic strategies using Agrobacterium-mediated transformation and particle bombardment. In African violet, Agrobacterium-mediated transformation is affected by the Agrobacterium strain, selection marker, and cutting-induced wounding stress. Somaclonal variation, which arises in tissue cultures, can be problematic in maintaining true-to-type clonal material, but may be a useful tool for obtaining variation in flower colour. The only transgenic African violet plants generated to date with horticulturally useful traits are tolerant to boron (heavy metal) stress, or bear a glucanase-chitinase gene.