This study was carried out to determine the effect of chilling on both cold-acclimated and non-acclimated chickpea (Cicer arietinum L.) cultivars (Gökçe and Canıtez 87). Chickpea seedlings grown in soil culture for 12 days were subjected to chilling temperatures (2 and 4°C for 12 days) after maintaining in cold-acclimation (10°C, 7 days) or non-acclimation (25°C, 7 days) periods. The lowest values of growth parameters were obtained with cold-acclimated plants, whereas non-acclimated plants exhibited the lowest water content values, especially at 2°C. There was no effect of cold-acclimation period on chlorophyll fluorescence parameters. Plants subjected to chilling temperatures after cold-acclimation were more tolerant with respect to chlorophyll fluorescence parameters, and Gökçe had better photosystem II (PSII) photochemical activity. In the chilling treatments, total chlorophyll (a ? b) content reduced, especially at 2°C, while anthocyanin and flavonoid contents increased to a greater extent in Gökçe and carotenoid content of the cultivars did not change. Malondialdehyde (MDA) content was higher for Canıtez 87, mostly at 2°C, while proline accumulation was greater for Gökçe. The cold-acclimation period led to a remarkable increase in antioxidant enzyme activities of both cultivars. The superoxide dismutase (SOD) activity was much higher in Gökçe for both chilling temperatures and the ascorbate peroxidase (APX) activity increased only in the cold-acclimated 4°C treatments. Similarly, with APX activity, the glutathione reductase Communicated by Z. Gombos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.