Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more antioxidant therapy in humans has to been performed.
BackgroundReactive oxygen species (ROS) are formed during normal metabolism of oxygen and are produced as by-products of aerobic metabolism. A certain amount of ROS production is necessary for gene expression [1], cell signalling [2,3], and redox homeostasis. Scavenging antioxidant systems are indispensable for maintaining an adequate amount of ROS. The balance between the generation and elimination of ROS is a key factor required for almost every metabolic function in mammals. Maintenance of this balance is an important constitutive process and has a particular influence on cell proliferation, differentiation, apoptosis, and death [4]. When ROS production overwhelms the scavenging ability of antioxidants, oxidative stress (OS) occurs. Unfortunately, disruption of this balance can easily result from either an increase in the concentration of ROS or a decrease in scavenging ability. Excessive ROS levels are harmful to the human body and can result in accumulation of oxidative damage in distinct subcellular compartments that exert very toxic effects on DNA, proteins, and lipids. ROS-mediated damage can ultimately influence physiological functions, such as cell signalling pathways and redox-sensitive signalling pathways, and lead to pathological conditions [5].Regarding the female reproductive system, ROS and antioxidants have been recognized as key factors involved in ovarian physiological metabolism. Many studies have investigated the presence of antioxidants and their transcripts in the female reproductive tract [6][7][8]. Previous studies have reported that the balance between ROS and antioxidants greatly influences th...