Objective: Differentiation therapy with the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3), is a promising approach to treatment of acute myeloid leukemia (AML); however, 1,25D3 induces hypercalcemia at pharmacologically active doses. We investigated the in vitro and in vivoantileukemic efficacy of combined treatment with non-toxic doses of a low-calcemic 1,25D3 analogue, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-nor-Gemini; Ro27-5646), and rosemary plant agents in a mouse model of AML. Methods: Proliferation and differentiation of WEHI-3B D– (WEHI) murine myelomonocytic leukemia cellsin vitro were determined by standard assays. Reactive oxygen species, glutathione and protein expression levels were measured by flow cytometry, enzymatic assay and Western blotting, respectively. Systemic AML was developed by intravenous injection of WEHI cells in syngeneic Balb/c mice. Results: 19-nor-Gemini had a higher potency than its parent compounds, Gemini (Ro27-2310) and 1,25D3, in the induction of differentiation (EC50 = 0.059 ± 0.011, 0.275 ± 0.093 and 0.652 ± 0.085 nM, respectively) and growth arrest (IC50 = 0.072 ± 0.018, 0.165 ± 0.061 and 0.895 ± 0.144 nM, respectively) in WEHI cells in vitro, and lower in vivo toxicity. Combined treatment of leukemia-bearing mice with 19-nor-Gemini (injected intraperitoneally) and standardized rosemary extract (mixed with food) resulted in a synergistic increase in survival (from 42.2 ± 2.5 days in untreated mice to 66.5 ± 4.2 days, n = 3) and normalization of white blood cell and differential counts. This was consistent with strong cooperative antiproliferative and differentiation effects of low concentrations of 19-nor-Gemini or 1,25D3 combined with rosemary extract or its major polyphenolic component, carnosic acid, as well as with the antioxidant action of rosemary agents and vitamin D derivatives in WEHI cell cultures. Conclusion: Combined effectiveness of 1,25D3 analogues and rosemary agents against mouse AML warrants further exploration of this therapeutic approach in translational models of human leukemia.