The worldwide outbreaks of the chikungunya virus (CHIKV) in the last years demonstrated the need for studies to screen antivirals against CHIKV. The virus was first isolated in Tanzania in 1952 and was responsible for outbreaks in Africa and Southwest Asia in subsequent years. Between 2007 and 2014, some cases were documented in Europe and America. The infection is associated with low rates of death; however, it can progress to a chronic disease characterized by severe arthralgias in infected patients. This infection is also associated with Guillain-Barré syndrome. There is no specific antivirus against CHIKV. Treatment of infected patients is palliative and based on analgesics and non-steroidal anti-inflammatory drugs to reduce arthralgias. Several natural molecules have been described as antiviruses against viruses such as dengue, yellow fever, hepatitis C, and influenza. This review aims to summarize the natural compounds that have demonstrated antiviral activity against chikungunya virus in vitro.Viruses 2020, 12, 272 2 of 17 CHIKV belongs to the Alphavirus genus and the Togaviridae family. It is a positive-sense, single-stranded RNA (12 kb in length) virus, with an enveloped icosahedral capsid [10]. The virus lifecycle starts via the attachment of the viral glycoproteins to the cell membrane receptors, mainly to MXRA8 [11,12] but also to prohibitin (PHB) [13], phosphatidylserine (PtdSer) [14], and glycosaminoglycans (GAGs) [15] receptors in mammalian and to ATP synthase β in mosquito cells [16], forming a pore. Then, a virus capsid is released into the cytoplasm, where the replication process takes place. Viral genome is uncoated and directly translated into nonstructural (NS) proteins nP1-4. The NS proteins form the viral replicase complex that catalyzes the synthesis of a negative strand, a template to synthesize the full-length positive sense genome, and the subgenomic mRNA. The subgenomic mRNA is translated in a polyprotein, which is cleaved to produce the structural proteins C, E3, E2, 6k, and E1, followed by the assembly of the viral components and virus release (Figure 1) [17,18].