Porphyritic rhyolite sills form an important component of the footwall of the Wolverine volcanogenic massive sulfide (VMS) deposit, Yukon, Canada, and occur proximal to mineralization in the immediate deposit area (Wolverine/Lynx zone) and at similar stratigraphic levels along strike (Fisher, Puck, and Sable zones). Porphyritic rhyolites are of two types: an older quartz-feldspar porphyritic (QFP) rhyolite suite; and a younger feldspar porphyritic (FP) suite. Both the QFP and FP suites of intrusions are semiconcordant, suggesting a silllike morphology, and are altered and crosscut by veinlet mineralization, suggesting that they are pre-to synmineralization. The margins of QFP suite of intrusions contain minor xenoliths of surrounding shales and poorly developed chilled margins suggesting emplacement into partially consolidated sedimentary rocks, whereas the FP suite of intrusions shows well-developed chilled margins indicative of emplacement into fully solidified sedimentary rock. These features suggest that the QFP suite of intrusions represents an older phase of rhyolitic magmatism, whereas the FP suite represents a younger event. This is supported by U-Pb zircon ages, which indicate a 352.4 ± 1.5 Ma emplacement age for the FP suite and a ~347 to 346 Ma emplacement for the FP suite (two ages at 347.8 ± 1.3 and 346.0 ± 2.2 Ma). Both suites of porphyries have inherited Proterozoic zircon and have ratios of La/SmUCN~1 and Nb/ThUCN~1 (UCN -upper continental crust normalized), indicating derivation from and/or extensive interaction with ancient upper continental crustal materials. The FP suite, however, has elevated high field strength element (HFSE) and rare earth element (REE) contents, high zircon saturation temperatures, and higher Nb/Ta ratios and lower Ti/Sc ratios than the QFP suite. These features are interpreted to reflect that the FP suite of magmas was hotter (>900°C) melts with a greater mantle component in their genesis. Both suites, however, are interpreted to have formed due to basaltic upwelling, crustal melting, and crust-mantle mixing during ensialic back-arc basin activity. The presence of mantle heat within the Wolverine basin from ~352 to ~347 to 346 Ma, a minimum of 5 m.y., suggests that sustained mantle heat flow was critical to the genesis of the Wolverine porphyries. It is also suggested that this sustained mantle heat was responsible for the Wolverine hydrothermal system and that upwelling mantle may be essential in providing the heat to drive hydrothermal systems even in continental margin-type VMS environments (e.g., Bathurst, Iberian pyrite belt).The Wolverine porphyries are among the most HFSE-and REE-enriched felsic rocks associated with VMS mineralization globally. The high HFSE and REE concentrations in these rocks are interpreted to be due to