Collective behavior emerges from local interactions between group members, and natural selection can fine-tune these interactions to achieve different collective outcomes. However, at least in principle, collective behavior can also evolve via changes in group-level parameters. Here, we show that army ant mass raiding, an iconic collective behavior in which many thousands of ants spontaneously leave the nest to go hunting, has evolved from group raiding, in which a scout directs a much smaller group of ants to a specific target. We describe the structure of group raids in the clonal raider ant, a close relative of army ants. We find that the coarse structure of group raids and mass raids is highly conserved, and that army ants and their relatives likely follow similar behavioral rules, despite the fact that their raids differ strikingly in overall appearance. By experimentally increasing colony size in the clonal raider ant, we show that mass raiding gradually emerges from group raiding without altering individual behavioral rules. This suggests a simple mechanism for the evolution of army ant mass raids, and more generally that scaling effects may provide an alternative mechanism for evolutionary transitions in complex collective behavior.