Polyamines are implicated in regulating various developmental processes in plants, but their exact roles and how they govern these processes still remain elusive. We report here an Arabidopsis bushy and dwarf mutant, bud2, which results from the complete deletion of one member of the small gene family that encodes S-adenosylmethionine decarboxylases (SAMDCs) necessary for the formation of the indispensable intermediate in the polyamine biosynthetic pathway. The bud2 plant has enlarged vascular systems in inflorescences, roots, and petioles, and an altered homeostasis of polyamines. The double mutant of bud2 and samdc1, a knockdown mutant of another SAMDC member, is embryo lethal, demonstrating that SAMDCs are essential for plant embryogenesis. Our results suggest that polyamines are required for the normal growth and development of higher plants.Cell Research (2006)
IntroductionPolyamines, including diamine putrescine, triamine spermidine and tetraamine spermine, are aliphatic nitrogen compounds distributed widely from bacteria to higher plants [1,2] and have been implicated to play important roles in growth and development [3]. At the cellular level, polyamines are organic cations, interacting with the macromolecules that possess anionic groups such as DNA, RNA, lipids and proteins, thereby influencing DNA conformation, gene expression and protein synthesis, and modulating enzyme activity. In higher plants, polyamines are able to affect membrane fluidity by binding to phospholipids in membrane [4] and mediate biotic and abiotic stress responses, such as pathogen infection, osmotic stress, potassium deficiency and wounding [5][6][7][8][9]. Previous observations revealed that polyamines may be involved in a variety of plant developmental processes, such as cell division, root initiation, somatic embryogenesis, xylogenesis, flower development, fruit ripening and senescence [3]. Recent studies have indicated that polyamines also affect the formation of plant architecture, such as internode elongation [10,11], root branching [12] and shoot apical dominance [13].The plant polyamine biosynthetic pathway is relatively simple [14]. Putrescine is derived either from ornithine catalyzed by ornithine decarboxylase (ODC) or from arginine through several steps catalyzed by arginine decarboxylase (ADC), agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. Spermidine and spermine are synthesized from putrescine through spermidine and spermine synthases (SPDS and SPMS) from the donor of decarboxylated S-adenosylmethionine (dcSAM), which is produced from S-adenosylmethionine (SAM) by the action of S-adenosylmethionine decarboxylase (SAMDC).Although application of inhibitors is very useful in studying the polyamine biosynthetic pathway and in ex- [11,[19][20][21][22][23][24]. However, no mutant defective in SAMDC has been reported yet, although SAMDC cDNAs were cloned and their transgenic plants have been generated [25][26][27][28][29]. In this paper, we report the isolation and characterization of an Arabidopsis...