Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase ( AtCKX ) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5 : GUS (  -glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter: GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.
SummaryA novel Arabidopsis thaliana mutant, named hoc, was found to have an high organogenic capacity for shoot regeneration. The HOC locus may be involved in cytokinin metabolism leading to cytokininoverproduction. In vitro, hoc root explants develop many shoots in the absence of exogenous growth regulators. The mutant displays a bushy phenotype with supernumerary rosettes and with normal phyllotaxy, resulting from precocious axillary meristem development. Genetic and molecular analyses show that the high shoot regeneration and the bushy phenotype are controlled by a recessive single gene, located on chromosome I, next to the GAPB CAPS marker. The mapping data and allelism tests reveal that the hoc mutant is not allelic to other reported Arabidopsis growth-regulator mutants. In darkness the hoc mutant is de-etiolated, with a short hypocotyl, opened cotyledons and true leaves. Growth regulator assays reveal that the mutant accumulates cytokinins at about two-and sevenfold the cytokinin level of wild-type plants in its aerial parts and roots, respectively. Consequently, the elevated amounts of endogenous cytokinins in hoc plants are associated with high organogenic capacity and hence bushy phenotype. Thus hoc is the ®rst cytokinin-overproducing Arabidopsis mutant capable of auto-regenerating shoots without exogenous growth regulators.
Shoots and roots can be regenerated through organogenesis in tissue culture by subjecting plant explants to the appropriate regime of hormone treatments. In an effort to understand the control of shoot organogenesis, we screened for mutants in Arabidopsis thaliana (L.) Heynh. Columbia ecotype for enhanced shoot development at sub-optimal concentrations of cytokinin. Mutants in four different complementation groups were identified, one of which represents a new locus named increased organ regeneration1 (ire1) and another that is allelic to the previously identified pom1/erh2 mutant. Although the mutants were selected for their response to cytokinin, they were neither hypersensitive to, nor were they over-producers of cytokinins. The mutations identified in this study not only promote more robust shoot production in tissue culture, but also enhance green-callus and root formation. We interpret this to mean that, in tissue culture, IRE genes act before organ specification during the time when root explants acquire the competency to respond to organ formation signals. In normal plant development, IRE genes may down-regulate the competency of vegetative tissue to respond to hormonal signals involved in shoot and root organogenesis.
Purpose: To identify the retinal layer predominantly affected in eyes with subclinical and clinical macular edema in diabetes type 2. Methods: A cohort of 194 type 2 diabetic eyes/patients with mild nonproliferative diabetic retinopathy (ETDRS levels 20/35) were examined with Cirrus spectral-domain optical coherence tomography (OCT) at the baseline visit (ClinicalTrials.gov identifier: NCT01145599). Automated segmentation of the retinal layers of the eyes with subclinical and clinical macular edema was compared with a sample of 31 eyes from diabetic patients with normal OCT and an age-matched control group of 58 healthy eyes. Results: From the 194 eyes in the study, 62 had subclinical macular edema and 12 had clinical macular edema. The highest increases in retinal thickness (RT) were found in the inner nuclear layer (INL; 33.6% in subclinical macular edema and 81.8% in clinical macular edema). Increases were also found in the neighboring layers. Thinning of the retina was registered in the retinal nerve fiber, ganglion cells and inner plexiform layers in the diabetic eyes without macular edema. Conclusions: The increase in RT occurring in diabetic eyes with macular edema is predominantly located in the INL but extends to neighboring retinal layers indicating that it may be due to extracellular fluid accumulation.
Young adult eyes and eyes with underlying diabetic retinopathy or uveitis are at risk for total closure of the posterior CCC. Only young adult eyes required Nd:YAG laser capsulotomy after the posterior CCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.