Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of age-related dementia that begins with memory loss and progresses to include severe cognitive impairment. A major pathological hallmark of AD is the accumulation of beta amyloid peptide (Aβ) in senile plaques in the brain of AD patients. The exact mechanism by which AD takes place remains unknown. However, an increasing number of studies suggests that ATP-binding cassette (ABC) transporters, which are localized on the surface of brain endothelial cells of the bloodbrain barrier (BBB) and brain parenchyma, may contribute to the pathogenesis of AD. Recent studies have unraveled important roles of ABC transporters including ABCB1 (P-glycoprotein, P-gp), ABCG2 (breast cancer resistant protein, BCRP), ABCC1 (multidrug resistance protein 1, MRP1), and the cholesterol transporter ABCA1 in the pathogenesis of AD and Aβ peptides deposition inside the brain. Therefore, understanding the mechanisms by which these transporters contribute to Aβ deposition in the brain is important for the development of new therapeutic strategies against AD. This review summarizes and highlights the accumulating evidence in the literature which describe the role of altered function of various ABC transporters in the pathogenesis and progression of AD and the implications of modulating their functions for the treatment of AD. KEYWORDS: ABC transporters, Alzheimer's disease, blood-brain barrier, ABCA1, P-glycoprotein, MRP1, BCRP A lzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of age-related dementia that begins with memory loss and progresses to include severe cognitive impairment.1 The pathogenesis of AD is complex, and involves molecular, genetic, cellular, and physiological alterations to the brain and blood-brain barrier (BBB) that are still not completely understood.2,3 The prevalence of AD is going up rapidly worldwide, with about 30 million people suffering from this disease nowadays, and it has an increasing socioeconomic impact. 4 Despite the huge demand for treatments, existing drugs have limited or no efficacy for AD. 5,6 AD is characterized by a significant loss of neurons and atrophy of the hippocampus and cerebral cortex.7 It begins as mild short-term memory disturbances and ends in total loss of cognition and executive functions.8−10 The neuropathology of AD is characterized by two pathogenic hallmarks: the intraneuronal neurofibrillary tangle (NFT) and the extracellular amyloid plaque. 11,12 NFTs are largely composed of hyperphosphorylated fibrillar forms of a protein called microtubule associated protein tau which accumulates in the entorhinal cortex and the pyramidal neurons of the CA1 region of the hippocampus and subiculum.7 The well-known amyloid cascade hypothesis suggests that AD is precipitated by the accumulation of amyloid plaques that are mainly composed of fibrils of peptides collectively known as beta amyloid (Aβ) which are produced by the sequential cleavage of am...